Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Evol ; 185: 103453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931353

RESUMO

The Initial Upper Paleolithic (IUP) is one of the most important phases in the recent period of the evolution of humans. During a narrow period in the first half of Marine Isotope Stage 3 laminar industries, accompanied by developed symbolism and specific blade technology, emerged over a vast area, replacing different variants of the Middle Paleolithic. In western Eurasia, the earliest appearance of IUP technology is seen at the Boker Tachtit site, dated ca. 50 ka cal BP. The earliest evidence of IUP industries in the Balkans and Central Europe, linked to the spread of Homo sapiens, has been dated to around 48 ka cal BP. A key area of IUP dispersals are the mountains and piedmont of southern Siberia and eastern Central Asia. One of the reference assemblages here is Kara-Bom, an open-air site in the Siberian Altai. Three major settlement phases are distinguished in the sediment sequence. In this paper, we present the results of new radiocarbon determinations and Bayesian models. We find that the latest phase of the IUP, Upper Paleolithic 1 ('UP1') is bracketed between 43 and 35 ka cal BP (at 95.4% probability). The earliest IUP phase, 'UP2', begins to accumulate from ca. 49 ka cal BP and ends by ca. 45 ka cal BP. The Middle Paleolithic 'MP2' assemblages all fall prior to 50 ka cal BP. We can detect a spatial distribution of dates from the geographic core of the IUP beyond the Altai where it appears around 47-45 ka cal BP. The current distribution of dates suggests a west-east dispersal of the IUP technocomplex along the mountain belts of Central Asia and South Siberia.


Assuntos
Hominidae , Humanos , Animais , Teorema de Bayes , Península Balcânica , Sibéria , Tecnologia , Arqueologia , Fósseis
2.
Nature ; 618(7964): 328-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138083

RESUMO

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Assuntos
Osso e Ossos , DNA Antigo , Dente , Animais , Feminino , Humanos , Arqueologia/métodos , Osso e Ossos/química , Cervos/genética , DNA Antigo/análise , DNA Antigo/isolamento & purificação , DNA Mitocondrial/análise , DNA Mitocondrial/isolamento & purificação , História Antiga , Sibéria , Dente/química , Cavernas , Federação Russa
3.
Nature ; 610(7932): 519-525, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261548

RESUMO

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.


Assuntos
Homem de Neandertal , Animais , Feminino , Humanos , Cavernas , Genoma/genética , Hibridização Genética , Homem de Neandertal/genética , Sibéria , DNA Mitocondrial/genética , Cromossomo Y/genética , Masculino , Família , Homozigoto
5.
Philos Trans R Soc Lond B Biol Sci ; 377(1849): 20200493, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35249386

RESUMO

North Vietnam is situated on a major route of Pleistocene hominin dispersal in East Asia, and the area's karstic caves preserve many prehistoric shell middens. Fossil and genomic evidence suggest a complex human history in this region and more widely across Southeast Asia and southern China, but related archaeological investigations are hampered by challenging site stratigraphies. Recent investigations of shell middens in other geographical settings have revealed the microstratigraphic complexity of these anthropogenic deposits. But caves promote distinctive site formation processes, while tropical climates may catalyse geomorphic and diagenetic changes. These environmental factors complicate the interpretation of North Vietnam's shell middens and constraining their effects upon the formation, preservation and destruction of these sites is critical to understanding the archaeology of this region. We examine two archaeological cave sites, dated to the Late Pleistocene and located in the limestone uplands surrounding the Hanoi Basin. Each contains multiple shell midden layers associated with prehistoric occupation and burials. Using thin-section micromorphology (microstratigraphy), we reconstruct the depositional and post-depositional histories of these sites, presenting a geoarchaeological framework of interpretation that is applicable to shell middens in mainland Southeast Asia and tropical zones more widely. This work represents a further step towards improving our understanding of prehistoric human dispersals and adaptations in this region. This article is part of the theme issue 'Tropical forests in the deep human past'.


Assuntos
Interação Gene-Ambiente , Hominidae , Animais , Arqueologia , Fósseis , Hominidae/genética , Humanos , Vietnã
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969841

RESUMO

Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.


Assuntos
Cavernas , DNA Antigo , Fósseis , Hominidae/genética , Homem de Neandertal/genética , Animais
8.
Nat Ecol Evol ; 6(1): 28-35, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34824388

RESUMO

Since the initial identification of the Denisovans a decade ago, only a handful of their physical remains have been discovered. Here we analysed ~3,800 non-diagnostic bone fragments using collagen peptide mass fingerprinting to locate new hominin remains from Denisova Cave (Siberia, Russia). We identified five new hominin bones, four of which contained sufficient DNA for mitochondrial analysis. Three carry mitochondrial DNA of the Denisovan type and one was found to carry mtDNA of the Neanderthal type. The former come from the same archaeological layer near the base of the cave's sequence and are the oldest securely dated evidence of Denisovans at 200 ka (thousand years ago) (205-192 ka at 68.2% or 217-187 ka at 95% probability). The stratigraphic context in which they were located contains a wealth of archaeological material in the form of lithics and faunal remains, allowing us to determine the material culture associated with these early hominins and explore their behavioural and environmental adaptations. The combination of bone collagen fingerprinting and genetic analyses has so far more-than-doubled the number of hominin bones at Denisova Cave and has expanded our understanding of Denisovan and Neanderthal interactions, as well as their archaeological signatures.


Assuntos
Hominidae , Homem de Neandertal , Animais , Arqueologia , Cavernas , DNA Mitocondrial/genética , Hominidae/genética , Homem de Neandertal/genética
9.
Sci Rep ; 11(1): 15457, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326389

RESUMO

Denisova Cave, a Pleistocene site in the Altai Mountains of Russian Siberia, has yielded significant fossil and lithic evidence for the Pleistocene in Northern Asia. Abundant animal and human bones have been discovered at the site, however, these tend to be highly fragmented, necessitating new approaches to identifying important hominin and faunal fossils. Here we report the results for 8253 bone fragments using ZooMS. Through the integration of this new ZooMS-based data with the previously published macroscopically-identified fauna we aim to create a holistic picture of the zooarchaeological record of the site. We identify trends associated with climate variability throughout the Middle and Upper Pleistocene as well as patterns explaining the process of bone fragmentation. Where morphological analysis of bones from the site have identified a high proportion of carnivore bones (30.2%), we find that these account for only 7.6% of the ZooMS assemblage, with large mammals between 3 and 5 more abundant overall. Our analysis suggests a cyclical pattern in fragmentation of bones which sees initial fragmentation by hominins using percussive tools and secondary carnivore action, such as gnawing and digestion, likely furthering the initial human-induced fragmentation.


Assuntos
Arqueologia/métodos , Colágeno/química , Paleontologia/métodos , Animais , Osso e Ossos/patologia , Carnívoros , Cavernas , Fósseis , Hominidae , Humanos , Sibéria
10.
Nature ; 595(7867): 399-403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163072

RESUMO

Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals1-4. The dozen hominin remains recovered from the deposits also include Neanderthals5,6 and the child of a Neanderthal and a Denisovan7, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages5,8-11. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly-possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments.


Assuntos
Cavernas , DNA Antigo/análise , Sedimentos Geológicos/química , Hominidae/genética , Animais , Arqueologia , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Fósseis , História Antiga , Homem de Neandertal/genética , Sibéria
11.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33858989

RESUMO

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Homem de Neandertal/classificação , Homem de Neandertal/genética , Animais , Cavernas/química , DNA Mitocondrial/análise , DNA Mitocondrial/isolamento & purificação , Sedimentos Geológicos/química , Filogenia , População/genética , Análise de Sequência de DNA , Sibéria , Espanha
12.
PLoS One ; 16(1): e0244228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507977

RESUMO

The Central Siberian Plateau was the last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through a comprehensive dataset of mitochondrial DNA (mtDNA) genomes retained in the remnats of earlier ("Old") Siberians, primarily the Ket, Tofalar, and Todzhi, we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia (best represented by the Yukaghir) over the last 10,000 years. We generated 218 new complete mtDNA sequences and placed them into compound phylogenies with 7 newly obtained and 70 published ancient mitochondrial genomes. We have considerably extended the mtDNA sequence diversity (at the entire mtDNA genome level) of autochthonous Siberians, which remain poorly sampled, and these new data may have a broad impact on the study of human migration. We compared present-day mtDNA diversity in these groups with complete mitochondrial genomes from ancient samples from the region and placed the samples into combined genealogical trees. The resulting components were used to clarify the origins and expansion history of mtDNA lineages that evolved in the refugia of south-central Siberia and beyond, as well as multiple phases of connection between this region and distant parts of Eurasia.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , DNA Mitocondrial/história , Ligação Genética , Variação Genética , Haplótipos , História Antiga , Migração Humana , Humanos , Filogenia , Sibéria
13.
Proc Natl Acad Sci U S A ; 117(26): 15132-15136, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546518

RESUMO

We sequenced the genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, to 27-fold genomic coverage. We show that this Neandertal was a female and that she was more related to Neandertals in western Eurasia [Prüfer et al., Science 358, 655-658 (2017); Hajdinjak et al., Nature 555, 652-656 (2018)] than to Neandertals who lived earlier in Denisova Cave [Prüfer et al., Nature 505, 43-49 (2014)], which is located about 100 km away. About 12.9% of the Chagyrskaya genome is spanned by homozygous regions that are between 2.5 and 10 centiMorgans (cM) long. This is consistent with the fact that Siberian Neandertals lived in relatively isolated populations of less than 60 individuals. In contrast, a Neandertal from Europe, a Denisovan from the Altai Mountains, and ancient modern humans seem to have lived in populations of larger sizes. The availability of three Neandertal genomes of high quality allows a view of genetic features that were unique to Neandertals and that are likely to have been at high frequency among them. We find that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino-acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in Neandertals.


Assuntos
Genoma , Homem de Neandertal/genética , Animais , Evolução Biológica , Feminino , Fósseis , Regulação da Expressão Gênica , Variação Genética , Humanos , Endogamia , Densidade Demográfica , Federação Russa
14.
Proc Natl Acad Sci U S A ; 117(6): 2879-2885, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988114

RESUMO

Neanderthals were once widespread across Europe and western Asia. They also penetrated into the Altai Mountains of southern Siberia, but the geographical origin of these populations and the timing of their dispersal have remained elusive. Here we describe an archaeological assemblage from Chagyrskaya Cave, situated in the Altai foothills, where around 90,000 Middle Paleolithic artifacts and 74 Neanderthal remains have been recovered from deposits dating to between 59 and 49 thousand years ago (age range at 95.4% probability). Environmental reconstructions suggest that the Chagyrskaya hominins were adapted to the dry steppe and hunted bison. Their distinctive toolkit closely resembles Micoquian assemblages from central and eastern Europe, including the northern Caucasus, more than 3,000 kilometers to the west of Chagyrskaya Cave. At other Altai sites, evidence of earlier Neanderthal populations lacking associated Micoquian-like artifacts implies two or more Neanderthal incursions into this region. We identify eastern Europe as the most probable ancestral source region for the Chagyrskaya toolmakers, supported by DNA results linking the Neanderthal remains with populations in northern Croatia and the northern Caucasus, and providing a rare example of a long-distance, intercontinental population movement associated with a distinctive Paleolithic toolkit.


Assuntos
Arqueologia , Homem de Neandertal/genética , Animais , Cavernas , Fósseis/história , História Antiga , Sibéria
15.
Sci Rep ; 9(1): 13785, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558742

RESUMO

Denisova Cave in southern Siberia uniquely contains evidence of occupation by a recently discovered group of archaic hominins, the Denisovans, starting from the middle of the Middle Pleistocene. Artefacts, ancient DNA and a range of animal and plant remains have been recovered from the sedimentary deposits, along with a few fragmentary fossils of Denisovans, Neanderthals and a first-generation Neanderthal-Denisovan offspring. The deposits also contain microscopic traces of hominin and animal activities that can provide insights into the use of the cave over the last 300,000 years. Here we report the results of a micromorphological study of intact sediment blocks collected from the Pleistocene deposits in the Main and East Chambers of Denisova Cave. The presence of charcoal attests to the use of fire by hominins, but other evidence of their activities preserved in the microstratigraphic record are few. The ubiquitous occurrence of coprolites, which we attribute primarily to hyenas, indicates that the site was visited for much of its depositional history by cave-dwelling carnivores. Microscopic traces of post-depositional diagenesis, bioturbation and incipient cryoturbation are observed in only a few regions of the deposit examined here. Micromorphology can help identify areas of sedimentary deposit that are most conducive to ancient DNA preservation and could be usefully integrated with DNA analyses of sediments at archaeological sites to illuminate features of their human and environmental history that are invisible to the naked eye.


Assuntos
Cavernas , Fósseis , Hominidae , Animais , Arqueologia , Clima Frio , DNA Antigo/isolamento & purificação , História Antiga , Hominidae/genética , Humanos , Homem de Neandertal/genética , Paleontologia , Sibéria
16.
Sci Adv ; 5(9): eaaw3950, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31517046

RESUMO

A fully sequenced high-quality genome has revealed in 2010 the existence of a human population in Asia, the Denisovans, related to and contemporaneous with Neanderthals. Only five skeletal remains are known from Denisovans, mostly molars; the proximal fragment of a fifth finger phalanx used to generate the genome, however, was too incomplete to yield useful morphological information. Here, we demonstrate through ancient DNA analysis that a distal fragment of a fifth finger phalanx from the Denisova Cave is the larger, missing part of this phalanx. Our morphometric analysis shows that its dimensions and shape are within the variability of Homo sapiens and distinct from the Neanderthal fifth finger phalanges. Thus, unlike Denisovan molars, which display archaic characteristics not found in modern humans, the only morphologically informative Denisovan postcranial bone identified to date is suggested here to be plesiomorphic and shared between Denisovans and modern humans.


Assuntos
Falanges dos Dedos da Mão/anatomia & histologia , Genoma Humano , Dente Molar/anatomia & histologia , Homem de Neandertal , Animais , Humanos , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/genética , Especificidade da Espécie
17.
Nature ; 565(7741): 594-599, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700870

RESUMO

The Altai region of Siberia was inhabited for parts of the Pleistocene by at least two groups of archaic hominins-Denisovans and Neanderthals. Denisova Cave, uniquely, contains stratified deposits that preserve skeletal and genetic evidence of both hominins, artefacts made from stone and other materials, and a range of animal and plant remains. The previous site chronology is based largely on radiocarbon ages for fragments of bone and charcoal that are up to 50,000 years old; older ages of equivocal reliability have been estimated from thermoluminescence and palaeomagnetic analyses of sediments, and genetic analyses of hominin DNA. Here we describe the stratigraphic sequences in Denisova Cave, establish a chronology for the Pleistocene deposits and associated remains from optical dating of the cave sediments, and reconstruct the environmental context of hominin occupation of the site from around 300,000 to 20,000 years ago.


Assuntos
Cavernas , Hominidae , Animais , Sedimentos Geológicos/química , História Antiga , Sibéria , Fatores de Tempo
18.
Nature ; 565(7741): 640-644, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700871

RESUMO

Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans1,2, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations3. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils-as well as Denisova 11, the daughter of a Neanderthal and a Denisovan4-date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000-76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Assuntos
Cavernas , Fósseis , Hominidae , Datação Radiométrica , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Cervos , Fêmur/química , Sedimentos Geológicos/química , História Antiga , Hominidae/genética , Humanos , Homem de Neandertal/genética , Isótopos de Oxigênio , Sibéria , Fatores de Tempo , Dente/química
19.
Nature ; 561(7721): 113-116, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30135579

RESUMO

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.


Assuntos
Hominidae/genética , Hibridização Genética/genética , Homem de Neandertal/genética , Alelos , Animais , Pai , Feminino , Fluxo Gênico/genética , Genoma , Genômica , História Antiga , Humanos , Masculino , Mães , Fatores de Tempo
20.
Sci Adv ; 3(7): e1700186, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695206

RESUMO

The presence of Neandertals in Europe and Western Eurasia before the arrival of anatomically modern humans is well supported by archaeological and paleontological data. In contrast, fossil evidence for Denisovans, a sister group of Neandertals recently identified on the basis of DNA sequences, is limited to three specimens, all of which originate from Denisova Cave in the Altai Mountains (Siberia, Russia). We report the retrieval of DNA from a deciduous lower second molar (Denisova 2), discovered in a deep stratigraphic layer in Denisova Cave, and show that this tooth comes from a female Denisovan individual. On the basis of the number of "missing substitutions" in the mitochondrial DNA determined from the specimen, we find that Denisova 2 is substantially older than two of the other Denisovans, reinforcing the view that Denisovans were likely to have been present in the vicinity of Denisova Cave over an extended time period. We show that the level of nuclear DNA sequence diversity found among Denisovans is within the lower range of that of present-day human populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...